资源类型

期刊论文 268

年份

2023 28

2022 29

2021 25

2020 18

2019 27

2018 9

2017 9

2016 15

2015 11

2014 12

2013 9

2012 8

2011 6

2010 10

2009 7

2008 17

2007 8

2006 5

2004 1

2002 1

展开 ︾

关键词

复合材料 5

PP 2

力学性能 2

复合镀层 2

组合梁 2

BMI树脂 1

CCS 1

CO2分离 1

EFP 1

HDPE 1

WPC 1

Zn-Fe-SiO2 1

丁醇 1

买得起复合材料 1

二氧化硅 1

亚铁氰化铜 1

产品设计 1

介孔二氧化硅 1

代数推理 1

展开 ︾

检索范围:

排序: 展示方式:

Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 127-134 doi: 10.1007/s11705-008-0033-0

摘要: A series of “guava-like” silica/polyacrylate nanocomposite particles with close silica content and different grafting degrees were prepared via mini-emulsion polymerization using 3-(trimethoxysilyl)propyl methacrylate (TSPM) modified silica/acrylate dispersion. The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate (PA) resin to prepare corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the “guava-like” composite particles into polyacrylate matrix was studied. It was calculated that about 110 silica particles were accumulated in the bulk of every silica/polyacrylate composite latex particle. Both the solubility tests of silica/polyacrylate composite latex particles in tetrahydrofuran (THF) and the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites indicated that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix. When the grafting degree of polyacrylate onto silica was in a moderate range (ca. 20%–70%), almost all of silica particles in these “guava-like” composite particles were dispersed into the polyacrylate matrix in a primary-particle-level. However, at a lower grafting degree, massive silica aggregations were found in molded composites because of the lack of steric protection. At a greater grafting degree (i.e., 200%), a cross-linked network was formed in the silica/polyacrylate composite particles, which prevented the dispersion of composite particles in THF and polyacrylate matrix as primary particles.

关键词: silica/polyacrylate composite     cross-linked network     –70     guava-like     TEM    

Preparation and characterization of polyimide/silica/silver composite films

JIANG Lizhong, WU Dezhen, LUO Ning, WU Zhanpeng, MOU Nanxiang

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 291-295 doi: 10.1007/s11705-008-0059-3

摘要: Polyimide/silica/silver hybrid films were prepared by the sol-gel method combined with single-stage self-metallization technique. The structure of polyimide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated. The hybrid films were characterized by transmission electron microscopy, dynamic mechanical thermal analysis, Fourier transform infrared spectroscopy, ultraviolet visible spectroscopy and mechanical measurements. The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles. Silica acted as the nucleus for the silver particles. With increasing silica content, more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

关键词: single-stage self-metallization     spectroscopy     transmission     Polyimide/silica/silver     ultraviolet visible    

Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2037-2049 doi: 10.1007/s11705-023-2358-0

摘要: Although mesoporous silica with magnetically hybridized two-dimensional channel structures has been well studied in recent years, it remains a challenge to fabricate the counterpart with macroporous three-dimensional cubic structures since the highly acidic preparation conditions lead to dissolution of magnetic particles. Herein, we successfully prepared magnetic KIT-6 nano-composite and its amino derivatives by bearing acid-resistant iron oxide. The prepared materials exhibited excellent properties for U(VI) ions removal from aqueous solutions under various conditions. The experimental data show that the U(VI) adsorption features fast adsorption kinetics, high adsorption capacity and ideal selectivity toward U(VI). The adsorption process is of spontaneous and endothermic nature and ionic strength independence, and the adsorbents can be easily regenerated by acid treatment. Compared to pristine KIT-6, the introduction of magnetism does not reduce the efficiency of the material to remove U(VI) while exerting its role as a recovery adsorbent. The findings of this work further demonstrate the potential broad application prospects of magnetic hybrid mesoporous silica in radionuclide chelation.

关键词: magnetic nanoparticle     3D mesoporous silica     amino functionalization     adsorption of U(VI)     acid resistance    

A novel strategy for the construction of silk fibroin–SiO composite aerogel with enhanced mechanical

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 288-297 doi: 10.1007/s11705-022-2222-7

摘要: The practical application of silica aerogels is an enormous challenge due to the difficulties in improving both mechanical property and thermal insulation performance. In this work, silk fibroin was used as scaffold to improve the mechanical property and thermal insulation performance of silica aerogels. The ungelled SiO2 precursor solution was impregnated into silk fibroin to prepare silk fibroin–SiO2 composite aerogels via sol−gel method followed by freeze-drying. By virtue of the interfacial hydrogen-bonding interactions and chemical reactions between silk fibroin and silica nanoparticles, SiO2 was well-dispersed in the silk fibroin aerogel and composite aerogels exhibited enhanced mechanical property. By increasing the loading of silk fibroin from 15 wt % to 21 wt %, the maximum compressive stress was enhanced from 0.266 to 0.508 MPa when the strain reached 50%. The thermal insulation performance of the composite aerogels was improved compared with pure silica aerogel, as evidenced that the thermal conductivity was decreased from 0.0668 to 0.0341 W∙m‒1∙K‒1. Moreover, the composite aerogels exhibited better hydrophobicity and fire retardancy compared to pure silica aerogel. Our work provides a novel approach to preparing silk fibroin–SiO2 composite aerogels with enhanced mechanical property and thermal insulation performance, which has potential application as thermal insulation material.

关键词: silica aerogel     silk fibroin     impregnation     thermal insulation     mechanical property    

The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions

Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 432-439 doi: 10.1007/s11705-016-1584-0

摘要: Silver nanoparticles (AgNPs) have been synthesized in the presence of polyacrylate through the reduction of silver nitrate by sodium borohydride in aqueous solution. The AgNO and polyacrylate carboxylate group concentrations were kept constant at 2.0 × 10 and 1.0 × 10 mol?L , respectively, while the ratio of [NaBH ]/[AgNO ] was varied from 1 to 100. The ultra-violet-visible plasmon resonance spectra of these solutions were found to vary with time prior to stabilizing after 27 d, consistent with changes of AgNP size and distribution within the polyacrylate ensemble occurring. These observations, together with transmission electron microscopic results, show this rearrangement to be greatest among the samples at the lower ratios of [NaBH ]/[AgNO ] used in the preparation, whereas those at the higher ratios showed a more even distribution of smaller AgNP. All ten of the AgNP samples, upon a one thousand-fold dilution, catalyze the reduction of 4-nitrophenol to 4-aminophenol in the temperature range 283.2–303.2 K with a substantial induction time being observed at the lower temperatures.

关键词: silver nanoparticles     polyacrylates     catalysis     mechanism     sodium borohydride    

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 821-830 doi: 10.1007/s11709-019-0518-6

摘要: Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with progress in cement industry provides, it has become possible to produce cement type I with strength classes of 32.5, 42.5, and 52.5 MPa. On the one hand, the microstructure of cement has changed, and modified by NS, MS, and polymers; therefore it is very important to determine the optimal percentage of each additives for those CSCs. In this study, 12 mix designs containing different percentages of MS, NS, and polymer fibers in three cement strength classes(CSCs) (32.5, 42.5, and 52.5 MPa) were designed and constructed based on the mixture method. Results indicated the sensitivity of each CSCs can be different on the NS or MS in compressive strength of concrete. Consequently, strength classes have a significant effect on the amount of MS and NS in mix design of concrete. While, polymer fibers don’t have significant effect in compressive strength considering CSCs.

关键词: mixture method     compressive strength     nano-silica     micro-silica     polypropylene fibers    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1224-1236 doi: 10.1007/s11705-022-2139-1

摘要: Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

关键词: Fischer–Tropsch synthesis     titanium incorporation     mesoporous silica     metal-support interactions     C5+ selectivity    

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1101-1113 doi: 10.1007/s11705-021-2095-1

摘要: Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L–1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.

关键词: Janus nanoparticles     surfactant     double phase inversion     self-assembly     enhanced oil recovery    

Effects of polyethylenimine on the dispersibility of hollow silica nanoparticles

WEN Lixiong, WANG Qing, ZHENG Tianyuan, CHEN Jianfeng

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 277-282 doi: 10.1007/s11705-007-0050-4

摘要: In this study, two different methods were applied to disperse hollow silica nanoparticles (HSNP); one employed polyethylenimine (PEI) as the dispersant during the synthesis processes for preparing HSNP, while the other added PEI into suspensions of the prepared HSNP and used milling treatment to achieve the desired dispersion. It was found that adding PEI during the synthesis process of HSNP had no noticeable improvement in the dispersion, while adding PEI into suspensions of the prepared HSNP and utilizing milling treatment resulted in remarkable dispersion improvement. Therefore, the latter was chosen as the method in dispersing HSNP suspensions. The adsorption of PEI on the surface of HSNP and the stability of the aqueous suspensions was investigated. The results indicated that the adsorption of PEI on the surface of HSNP would increase the repulsive energy among particles, hence reducing the agglomeration of HSNP and improving the stability of the aqueous suspensions. The change of HSNP’s ζ potential after adding PEI and the relationship between the adsorbed amount of PEI and pH were also investigated.

关键词: dispersion improvement     different     prepared HSNP     relationship     agglomeration    

copolymerization of -isopropylacrylamide with 3-(methacryloxy)propyl trimethoxysilane on ultrafine silica

ZHANG Liping, ZHU Yi, NI Caihua

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 242-247 doi: 10.1007/s11705-008-0043-y

摘要: Thermosensitive core-shell particles were synthesized through graft copolymerization of -isopropylacrylamide with [ 3-(methacryloxy) propyl]trimethoxysilane (MPT) coupled on the surface of ultrafine silica beads. The copolymerization was carried out using polyvinyl alcohol as a surfactant, water and cyclohexanol as mixed solvent, and 2,2′-azobis(isobutyronitrile) as an initiator. The effect of surfactant concentration and the composition of the mixed solvent on the graft rate were investigated. The structure of modified silica was confirmed by infrared spectra. Differential scanning calorimetry (DSC) has revealed the thermosensitivity of the particles. The thermosensitive particles were used as packing materials of high performance liquid chromatography (HPLC) columns for separating naphthalene derivatives. Satisfactory separation was obtained by controlling the temperature of the column. In contrast, the packing material of silica-MPT has no such separation efficiency due to the lack of thermosensitivity. The effect of the composition of the mobile phase on the separating efficiency was also investigated. The temperature-controlled separation was effective only when the water content was higher than 90% (v/v) in the water-methanol mobile phase. The mechanism for the temperature-controlled separation is attributed to a polarity change of poly(-isopropylacrylamide) which undergoes volume phase transition on the silica surface as the temperature increases.

关键词: undergoes     water-methanol     surfactant concentration     copolymerization     chromatography    

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1198-1210 doi: 10.1007/s11705-021-2133-z

摘要: Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated. The synthesized materials were characterized by various physicochemical and spectroscopic techniques like scanning electron microscope-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area, thermogravimetric analysis and n-butylamine acidity. The shape of catalysts particles plays an important role in its activity. The sulfonic acid functionalized mesoporous silica catalysts of spherical shape and the cube shape were assessed for catalytic activity in biodiesel production. The catalytic biodiesel production reaction over the catalysts were studied by esterification of free fatty acid, oleic acid with methanol. The effect of various reaction parameters such as catalyst concentration, acid/alcohol molar ratio, catalyst amount, reaction temperature and reaction time on catalytic activity were investigated to optimize the conditions for maximum conversion. It was sulfonated cubic shape mesoporous silica which exhibited better activity as compared to the spherical shape silica catalysts. Additionally, the catalyst was regenerated and reused up to three cycles without any significant loss in activity. The present catalysts exhibit superior performance in biodiesel production and it can be used for the several biodiesel feedstock’s that are rich in free fatty acids.

关键词: solid acid catalyst     mesoporous silica     sulfonic acid     biodiesel     esterification     oleic acid    

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1316-1330 doi: 10.1007/s11709-020-0646-z

摘要: In this study, the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised. Silica fume was used at concentrations of 0%, 5%, 10%, and 20%. Cube specimens (100 mm × 100 mm × 100 mm) were prepared for testing the compressive strength and ultrasonic pulse velocity. They were cured at 20°C±2°C in a standard cure for 7, 28, and 90 d. After curing, they were subjected to temperatures of 20°C, 200°C, 400°C, 600°C, and 800°C. Two well-known deep learning approaches, i.e., stacked autoencoders and long short-term memory (LSTM) networks, were used for forecasting the compressive strength and ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures. The forecasting experiments were carried out using MATLAB deep learning and neural network tools, respectively. Various statistical measures were used to validate the prediction performances of both the approaches. This study found that the LSTM network achieved better results than the stacked autoencoders. In addition, this study found that deep learning, which has a very good prediction ability with little experimental data, was a convenient method for civil engineering.

关键词: concrete     high temperature     strength properties     deep learning     stacked auto-encoders     LSTM network    

Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template

YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 135-139 doi: 10.1007/s11705-008-0031-2

摘要: The long-chain ionic liquid 1-hexadecyl-3-methylimidazolium chloride (CmimCl) was used as a template to prepare cerium-doped MCM-48 materials in basic medium by a hydrothermal synthesis procedure. The effect of the amount of Ce salt and CmimCl/Si on the synthesis were discussed in detail. This mesoporous material exhibits a pore architecture which is cubic 3 gyroid and possesses a large surface area and a narrow pore distribution. Cerium in calcined porous framework exists in the form of well-dispersed tetrahedral coordination. The CmimCl shows a high tendency toward self-aggregation that allows the formation of the cerium-doped gyroid mesostructure by using the appropriate amount of Ce salt.

关键词: mesoporous     CmimCl/Si     tendency     mesostructure     synthesis procedure    

Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1804-7

摘要:

● Cu-C-MSNs are developed via a co-doping step of Cu with L(+)-ascorbic acid.

关键词: Cation-π structures     Polarization electric field     Fenton-like process     Contaminants cleavage    

标题 作者 时间 类型 操作

Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong

期刊论文

Preparation and characterization of polyimide/silica/silver composite films

JIANG Lizhong, WU Dezhen, LUO Ning, WU Zhanpeng, MOU Nanxiang

期刊论文

Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration

期刊论文

A novel strategy for the construction of silk fibroin–SiO composite aerogel with enhanced mechanical

期刊论文

The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions

Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln

期刊论文

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

期刊论文

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

期刊论文

Effects of polyethylenimine on the dispersibility of hollow silica nanoparticles

WEN Lixiong, WANG Qing, ZHENG Tianyuan, CHEN Jianfeng

期刊论文

copolymerization of -isopropylacrylamide with 3-(methacryloxy)propyl trimethoxysilane on ultrafine silica

ZHANG Liping, ZHU Yi, NI Caihua

期刊论文

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

期刊论文

Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed

Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN

期刊论文

Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template

YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen

期刊论文

Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction

期刊论文